Ranolazine decreases mechanosensitivity of the voltage-gated sodium ion channel Na(v)1.5: a novel mechanism of drug action.
نویسندگان
چکیده
BACKGROUND Na(V)1.5 is a mechanosensitive voltage-gated sodium-selective ion channel responsible for the depolarizing current and maintenance of the action potential plateau in the heart. Ranolazine is a Na(V)1.5 antagonist with antianginal and antiarrhythmic properties. METHODS AND RESULTS Mechanosensitivity of Na(V)1.5 was tested in voltage-clamped whole cells and cell-attached patches by bath flow and patch pressure, respectively. In whole cells, bath flow increased peak inward current in both murine ventricular cardiac myocytes (24±8%) and human embryonic kidney 293 cells heterologously expressing Na(V)1.5 (18±3%). The flow-induced increases in peak current were blocked by ranolazine. In cell-attached patches from cardiac myocytes and Na(V)1.5-expressing human embryonic kidney 293 cells, negative pressure increased Na(V) peak currents by 27±18% and 18±4% and hyperpolarized voltage dependence of activation by -11 mV and -10 mV, respectively. In human embryonic kidney 293 cells, negative pressure also increased the window current (250%) and increased late open channel events (250%). Ranolazine decreased pressure-induced shift in the voltage dependence (IC(50) 54 μmol/L) and eliminated the pressure-induced increases in window current and late current event numbers. Block of Na(V)1.5 mechanosensitivity by ranolazine was not due to the known binding site on DIVS6 (F1760). The effect of ranolazine on mechanosensitivity of Na(V)1.5 was approximated by lidocaine. However, ionized ranolazine and charged lidocaine analog (QX-314) failed to block mechanosensitivity. CONCLUSIONS Ranolazine effectively inhibits mechanosensitivity of Na(V)1.5. The block of Na(V)1.5 mechanosensitivity by ranolazine does not utilize the established binding site and may require bilayer partitioning. Ranolazine block of Na(V)1.5 mechanosensitivity may be relevant in disorders of mechanoelectric dysfunction.
منابع مشابه
Ranolazine inhibits shear sensitivity of endogenous Na+ current and spontaneous action potentials in HL-1 cells
Na(V)1.5 is a mechanosensitive voltage-gated Na(+) channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na(+) current and delayed rectifier (I(Kr)) currents. Recently, ranolazine was also shown to be an inhibitor of Na(V)1.5 mechanosensitivity. Stretch also accelerat...
متن کاملMembrane permeable local anesthetics modulate NaV1.5 mechanosensitivity
Voltage-gated sodium selective ion channel Na(V)1.5 is expressed in the heart and the gastrointestinal tract, which are mechanically active organs. Na(V)1.5 is mechanosensitive at stimuli that gate other mechanosensitive ion channels. Local anesthetic and antiarrhythmic drugs act upon Na(V)1.5 to modulate activity by multiple mechanisms. This study examined whether Na(V)1.5 mechanosensitivity i...
متن کاملCardiac sodium channel Na(v)1.5 mechanosensitivity is inhibited by ranolazine.
The cardiac action potential is initiated by the depolarizing inward sodium current (INa). The pore-forming subunit of the cardiac sodium channel, Nav1.5, is the main ion channel that conducts INa in cardiac cells. Despite the large number of studies investigating Nav1.5, year after year, we are still learning new aspects regarding its roles in normal cardiac function and in diseased states. Th...
متن کاملRanolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells.
Human jejunum smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs) express the SCN5A-encoded voltage-gated, mechanosensitive sodium channel NaV1.5. NaV1.5 contributes to small bowel excitability, and NaV1.5 inhibitor ranolazine produces constipation by an unknown mechanism. We aimed to determine the presence and molecular identity of Na(+) current in the human colon smooth muscle a...
متن کاملState- and use-dependent block of muscle Nav1.4 and neuronal Nav1.7 voltage-gated Na+ channel isoforms by ranolazine.
Ranolazine is an antianginal agent that targets a number of ion channels in the heart, including cardiac voltage-gated Na(+) channels. However, ranolazine block of muscle and neuronal Na(+) channel isoforms has not been examined. We compared the state- and use-dependent ranolazine block of Na(+) currents carried by muscle Nav1.4, cardiac Nav1.5, and neuronal Nav1.7 isoforms expressed in human e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 125 22 شماره
صفحات -
تاریخ انتشار 2012